

- Typical risks associated with LNAPL
- Sustainable mindset
- LNAPL?
- LNAPL conceptual site model
- Case example
- Summary

Typical Risks Associated with LNAPL

- Direct contact with LNAPL
- Groundwater plume from dissolution
- Vapor plume from volatilization/evaporation

Typical Risks Associated with LNAPL

- Direct contact with LNAPL
 - Groundwater plume from dissolution
 - Vapor plume from volatilization/evaporation

When we are worrying about thin layers...

Typically...

- Vapor phase has been managed or not a concern
- Groundwater plume is naturally attenuating or managed
- Managing the thin layer for typically a non-risk issue

Typical thin layer LNAPL management...

- When only a nuisance level of sheen or a thin layer of LNAPL remains, the recoverable portion of the LNAPL body has been removed
- The remediation approach is typically routine site visits
 - Management of low technology device (sorbent socks, passive bailers, skimmers, etc.)
 - Long-term monitoring during regular site visits.
- Will not remove the remaining LNAPL within the subsurface
- LNAPL bodies will remain in the subsurface for years, to decades and possibly even centuries, as they naturally attenuate

Sustainable Thinking Throughout...

Sustainability has gone mainstream

How to Win The War On Global Warming

Sustainability concerns with typical LNAPL management programs...

- As the LNAPL approaches residual levels remediation becomes
 - more difficult technically
 - more costly (>\$ per gallon removed)
 - more environmental concerns (carbon footprint)
 - safety perspective (multiple site visits)
- There comes a point that these costs exceed benefits such as the potential reduction in risk to human health

One solution may be to demonstrate Non-Risk of remaining LNAPL

- Ground water naturally attenuating
- LNAPL body footprint is stable or shrinking
- LNAPL body drivers are minimal
- Mobility of LNAPL body is not present
- Areas of LNAPL body with potential mobility (i.e., recoverability) are minimal

LNAPL 101

- NAPL → Nonaqueous Phase Liquid
 - LNAPL → Light NAPL
 - DNAPL → Dense NAPL

- Nonaqueous → do not mix with water
- Petroleum liquids in soils and ground water
- Derived from crude oil
- Common LNAPLs:
 - Fuels, Lubricants, Chemical Feed Stock

LNAPL 102

- Typically found at top of groundwater zones
- Water and LNAPL do not mix → immiscible
 - Share pore space which limits the mobility
- Composed of compounds of concern (COCs)
 - Dissolves at trace levels above standards
 - Solubility of COCs is low enough for natural processes to attenuate over small distances

LNAPL is the Usual Source of Impacts

Why Concerned with LNAPL?

- Longer term concentrated chemical source mass
- Potential risks emanate from "source"
- Cleanups either manage pathways / target source
 - Most recovery actions leave residual mass
 - Actions and decisions are hinged on the...

LNAPL Conceptual Site Model

ASTM E 2531-06

- Development of CSM for remediation strategies for LNAPL released to the subsurface (i.e., LCSM)
- Tiered process with higher tiers for more difficult sites
- Provides framework for developing a LCSM
 - Guide for remediation metrics
 - Remediation strategy should be consistent with site objectives
 - Movement of LNAPL should be measured at a scale pertinent to LNAPL site objectives

Designation: E 2531 - 06

Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface¹

Example LNAPL Conceptual Site Model

Example LNAPL Conceptual Site Model

Are LNAPL bodies stable?

- During a release... No
- Soon after the release... Potentially
- Longer period after the release... Likely
- Thin layers... Yes

Early Release - High Head

Early Release - High Head

Longer time after Release - Head gone

Longer time after Release - Head gone

Groundwater there first...

- LNAPL resisted by capillary entry pressure
- LNAPL must displace water from water-filled porosity before it can enter the pore

Schematic of LNAPL Source Distribution

Micrograph of Residual NAPL Ganglia

Source: Beckett 2003

Saturation by Soil Type from 302 LNAPL Sites

As expected higher saturations in coarse grained soil, but lower than 100%

Soil Type	CL	ML	SC	SM	SW-SM	SW
Total # of Samples	73	46.0	21	43	22	54
Max LNAPL Saturation %	9.3	36.4	20.1	30.8	29.6	56.5
Average Saturation %	2.3	6.1	5.9	4.6	7.4	8.0
Max. Well LNAPL Thick.	15.3	7.2	7.5	8.3	8.3	2.4
Ave. Well LNAPL Thick.	6.2	3.0	4.1	2.8	5.8	0.8
# of Samples > 20% (10% for CL)	0	4	1	3	2	5
# of Samples > 10% (5% for CL)	11	10	6	8	6	14
% > 20% Saturation (10% for CL)	0.0%	8.7%	4.8%	7.0%	9.1%	9.3%
% > 10% Saturation (5% for CL)	15.1%	21.7%	28.6%	18.6%	27.3%	25.9%

(Adamski, 2006)

Demonstrate LNAPL Stability

- Effective hydraulic conductivity of LNAPL
 - "An absolute endpoint of LNAPL movement is when the LNAPL reaches field residual saturation, a condition where effective hydraulic conductivity of the LNAPL is zero." (Huntley and Beckett, 2001)
 - "LNAPL immobility occurs at an effective hydraulic conductivity below 10⁻⁶ cm/s." (Brost and Beckett, 2000)
- Demonstrate that LNAPL effective hydraulic conductivity is less than 10⁻⁶ cm/s.

LNAPL Effective Hydraulic Conductivity

$$K_{oil} = k_{ro} \frac{k_{soil} \rho_{oil} g}{\mu_{oil}}$$

```
K_{oil} = effective LNAPL hydraulic conductivity in the soil
```

 k_{ro} = effective LNAPL-layer relative permeability (API model)

 k_{soil} = permeability of soil

 μ_{oil} = dynamic viscosity of LNAPL

 p_{oil} = density of LNAPL

g = gravitational acceleration

							RJC (8/14/98
Brooks-Core	ey LNAPL D	istribution Worksheet					
Enter Data in	Yellow Regi	on - Use Consistent Length Units					
		T	-				
Monitoring We	II Thickness 4.150	(longth)					
D ₀ =	4.100	(length)					
Soil Character	istic	1	Copy data for V	Vork Chart	1		
n =	0.430	porosity	b _o =	4.150	monitoring well thickness in computation		putation
λ =	1.130	pore size dist. Index	D _o =	0.732	formation free-product volume (length)		
Ψ_{baw} =	0.148	displacement pressure head (length)	<u>S</u> _o =	0.410	effective LNAPL layer saturation		
S _{wr} =	0.105	irreducible water saturation	<u>k</u> ro =	0.223	effective LNAPL layer rel. permeability		
S _{ors} =	0.000	residual LNAPL saturation (saturated)	•		-		
S _{orv} =	0.000	residual LNAPL saturation (vadose)	ε =	4.770			
S _{or} =	0.000	resid. LNAPL sat. (rel. perm. calc.)	z _{ao} =	0.256			
Z _{orv} =	0.000	elev. vadose zone residual (length)	z _{ow} =	-3.894			
$Z_{ors} =$	0.000	elev. saturated zone residual (length)	$z_r =$	0.503	van Genuchten Parameters		
Fluid Characte	ristics:		Ψ_{bao} =	0.058	M =	0.628	
ρ _o =	0.938	LNAPL density (g/cm³)	Ψ _{bow} =	1.023	N =	2.690	
$\sigma_{aw} =$	74.100	air/water surface tension (dyne/cm)	ΔΨ =	0.966	α =	4.406	
$\sigma_{ow} =$	31.650	LNAPL/water surface tension (dyne/cm)	$z_{ao}+\Psi_{bao}=$	0.313	α _{ao} =	11.292	
σ _{ao} =	27.130	air/LNAPL surface tension (dyne/cm)	$z_{ow} + \Psi_{bow} =$	-2.871	$\alpha_{ow} =$	0.635	

- Effective LNAPL hydraulic conductivity
 - ~10⁻⁷ cm/s to ~10⁻⁹ cm/s
 - Less than 10⁻⁶ cm/s
- Results supported hypothesis that LNAPL body was stable and immobile

Path Forward

(Source: http://www.global-greenhouse-warming.com/global-warming-and-sustainability.html)

- Strong LNAPL
 Conceptual Site Model
- Most important for remediation decisions
- Main driver in this decision is risk reduction
- But in a sustainable frame of mind

Summary

- As an industry we need to consider treating these types of minor layers of LNAPL as non-risk
- Incorporate sustainability in the remedy selection at all stages of the remedy
- Weigh not only financial, but also social and environmental aspects
- Begins with a better understanding of the source, and the LNAPL Conceptual Site Model

